G482 Electrons, Waves and Photons

Q	Question		Expected Answers	Marks	Additional Guidance
1					
	а	i	E = (Pt =) 36 x 3600	C1	allow I = 3 A and E = VIt, etc.
			$= 1.3 \times 10^5 (J)$	A1	accept 129600 (J)
		ii	$Q = E/V = 1.3 \times 10^{5}/12$ or $Q = It = 3 \times 3600$	C1	ecf (a)(i)
			$= 1.1 \times 10^4$	A1	accept 1.08 x 10 ⁴
			unit: C	B1	allow A s not J V ⁻¹
		iii	$Q/e = 1.1 \times 10^4 / 1.6 \times 10^{-19}$	C1	ecf (a)(ii)
			$= 6.9 \times 10^{22}$	A1	accept 6.75 or 6.8 x 10 ²² using 10800
	b	i	the average displacement/distance travelled of the electrons along the		no mark for quoting formula
			wire per second;	B1	allow in one second
			(over time/on average) they move slowly in one direction through the		
			metal/Cu lattice (when there is a p.d. across the wire);	B1	
			(because) they collide constantly/in a short distance with the lattice/AW	B1	max 2 marks from 3 marking points
		ii	select I = nAev (= 3.0 A)	C1	1 mark for correct formula
			$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$	C1	1 mark for correct substitutions into formula
			$= 2.1 \times 10^{-3} (m s^{-1})$	A1	1 mark for correct answer to 2 or more SF
			Total question 1	12	

C	Question 2		Expected Answers	Marks	Additional Guidance
2					
	а		$\rho = RA/I$	M1	full word definition gains both marks
			with terms defined	A1	allow A is area as adequate; no unit cubes
	b	i	either the cable consists of (38) strands in parallel;	B1	max 1 mark for 38 x 0.052 = 1.98 with no
			or the area of the cable is 38 times the area of a strand or vice versa;		further explanation
			so the resistance of 1 strand is 38 times bigger, (i.e. 1.98 Ω km ⁻¹)		allow with either and or
			or the resistance is inversely proportional to the area	B1	allow only with or
		ii	$A = \rho I/R = 2.6 \times 10^{-8} \times 1000/2.0$	C1	allow 1 mark max. for R = 0.052 giving
			$= 1.3 \times 10^{-5} (m^2)$	A1	$A = 5.0 \times 10^{-4} (m^2)$
					give 1 mark max. for 1.3×10^{-8} (m ²)
	С	i	$P = VI = 400 \times 10^3 \times 440$	C1	P = VI not adequate for first mark
			$= 1.8 \times 10^8$ (W) or 180 M(W)	A1	expect 176
		ii	2000/176 = 11.4 so 12 required	B1	ecf(c)(i); using 180 gives 11.1
		iii	$P = I^2 R$	C1	accept power/cable = 2000/12 = 167 MW
			$=440^2 \times 0.052$	C1	I = 167M/400k = 417 A
			$= 1.0 \times 10^4 \text{ W (km^{-1}) or 10 kW (km^{-1})}$	A1	$P = 417^2 \times 0.052 = 9.0(3) \text{ kW (km}^{-1})$
					N.B. answer mark includes consistent unit
		iv	power lost per cable = 10 k x 100 x 12 = 12.0 MW	C1	ecf(c)(ii)(iii)
			fraction remaining = $(2000 - 12)/2000 = 0.994 \times 100 = 0.994 \text{ so } 99.4\%$	A1	allow second mark for 'correct' answer as
			or power lost per strand = 10 k x100 = 1.0 MW		fraction not percentage with BOD sign
			fraction remaining = $(176 - 1)/176 = 0.994$ so 99.4%		allow 1 mark max. if give correct % lost
					given rather than % remaining
					allow 1 mark max. for
					100 x (2000 - 1)/2000 = 99.95%
			Total question 2	14	

Question		on	Expected Answers	Marks	Additional Guidance
3					
	а		resistors in series add to 20 Ω and current is 0.60 A	B1	accept potential divider stated or formula
			so p.d. across XY is 0.60 x 12 (= 7.2 V)	B1	gives (12 /20) x 12 V (= 7.2)V
	b	i	the resistance of the LDR decreases	M1	
			(so total resistance in circuit decreases) and current increases	A1	
		ii	resistance of LDR and 12 Ω (in parallel)/across XY decreases	B1	alternative I increases so p.d. across 8.0 Ω
			so has smaller share of supply p.d. (and p.d. across XY falls)	B1	increases; so p.d. across XY falls
			Total question 3	6	
	Questi	on	Expected Answers	Marks	Additional Guidance
4	Queen			marito	
	а	i	no current/no light/does not conduct until V is greater than 1.5 V	B1	allow 1.4 to 1.6 V (QWC mark)
	-	-	brightness/intensity of LED increases with current/voltage above 1.5 V	B1	(alternative QWC mark)
			above 1.8 V current rises almost linearly with increase in p.d./AW	B1	
			the LED does not obey Ohm's law	M1	
			as I is not proportional to V/AW	A1	
			below 1.5 V, LED acts as an infinite R/ very high R/acts as open switch	B1	max 5 marks which must include at least
			above 1.5 V, LED resistance decreases (with increasing current/voltage)	B1	one of the first 2 marking points
		ii 1	infinite resistance	B1	
		2	$I = 23.0 \pm 1.0 \text{ (mA)}$	C1	
			$R = 1.9 \times 10^{3} / (23 \pm 1) = 83 \pm 4 \Omega$	A1	apply POT error for 0.083 Ω
	b		LED symbol with correct orientation	B1	diode symbol + circle + at least one arrow
			resistor (need not be labelled) and ammeter in series with it	B1	pointing away
			voltmeter in parallel across LED only	B1	
	С		the resistor limits the current in the circuit (when the LED conducts)	B1	
			otherwise it could overheat/burn out/be damaged/AW	B1	
	d		in fig 4.3 the voltage range is from zero to maximum possible	B1	allow 6.0 V
			in fig. 4.2 the resistance variation is small/AW	B1	accept the LED is part of a potential divider
			(so) in fig. 4.2 voltage variation across LED is small	B1	accept only at the top end of the range/AW
			Total question 4	16	

	Question		Expected Answers	Marks	Additional Guidance
5					
	а	i	λ distance between (neighbouring) identical points/points with same phase (on the wave)	B1	accept peak/crest to peak/crest, etc.
			f number of waves passing a point /cycles/vibrations (at a point) per unit	B1	accept number of waves produced by the
			time/second	B1	wave source per unit time/second
			v distance travelled by the wave (energy) per unit time/second		not $v = f \lambda$ and not 'in one second'
		ii	in 1 second f waves are produced each of one wavelength λ	M1	accept time for one λ to pass is 1/f
			distance travelled by first wave in one second is f $\lambda = v$	A1	so v = $\lambda/(1/f)$ =f λ
					give max 1 mark for plausible derivations purely in terms of algebra (no words)
	b	i	infra red is part of the e-m spectrum	B1	
			lower f or longer λ than the visible region/light or suitable value or range of λ	B1	accept any single λ in range 10 ⁻⁵ m to 7.5 x 10 ⁻⁷ m or any reasonable wider range
		ii1	$\lambda = c/f = 3.0 \times 10^8 / 6.7 \times 10^{13}$	C1	
			4.5 x 10 ⁻⁶ (m)	A1	accept 4.48×10^{-6} or more s.f.
		2	$T = 1/f = 1/6.7 \times 10^{13}$	C1	
			$T = 1.5 \times 10^{-14} (s)$	A1	accept 1.49 x 10 ⁻¹⁴
		iii	at least one cycle of a sine or cosine curve as judged by eye	B1	ecf (b)(ii)2
			amplitude 8.0 x 10 ⁻¹² m	B1	
			period = $1.5 \times 10^{-14} \text{ s}$	B1	
			Total question 5	14	

	Question		Expected Answers	Marks	Additional Guidance
6					
	а	i	when (two) waves meet/combine/interact/superpose, etc. (at a point)	M1	allow for A1 mark: (vector) sum/resultant
			there is a change in overall intensity/displacement	A1	displacement(s)/AW
		ii	constant phase difference/relationship (between the waves)	B1	just stating same frequency not sufficient
	b	i	path difference of $n\lambda$ for constructive interference	M1	allow waves arrive in phase
			producing either maximum amplitude/intensity or a maximum	A1	
			path difference of $(2n + 1)\lambda/2$ for destructive interference	M1	allow waves arrive in anti-/out of phase
			producing either minimum amplitude/intensity or a minimum	A1	max 3 marks; max 1 mark for two correct marking points but with n omitted
		ii	$x = \lambda D/a = 0.030 \times 5.0/0.20$	C1	give 1 mark max for 0.75 mm but zero for
			=0.75 (m)	A1	750 m
		iii 1	intensity increases by factor of 4	B1	
			position unchanged	B1	
		2	intensity unchanged	B1	
			distance apart of maxima is doubled	B1	
		3	intensity unchanged	B1	
			maxima move to positions of minima (and vice versa)	B1	
			Total question 6	14	

January 2010

Question		on	Expected Answers	Marks	Additional Guidance	
7						
	а	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$ = 3.16 x 10 ⁻¹⁹ (J)	M1 A1	mark is for correct substitution into formula min of 2 sig figs; allow 3.1 for $h = 6.6 \times 10^{-34}$	
		ii	$= 3.16 \times 10^{-19} \text{ (J)}$ 1.0 x 10 ⁻³ /3(.2) x 10 ⁻¹⁹ (= 3.1 x 10 ¹⁵)	B1	accept 3 x 10^{15} ; the mark is for the expression	
		iii	energy levels explanation: electrons have discrete energies in atom/AW each photon produced by electron moving between levels photon energy equal to energy difference between levels electron loses energy/making transition in correct direction	B1 B1 B1 B1	QWC mark good diagram can score marks allow $E_1 - E_2 = hf$ or similar	
		iv	blue light has a higher frequency/shorter wavelength than red light energy per photon is higher (so fewer needed to produce one mW)	B1 B1		
	b	i	vertical arrow up approximately through X	B1	allow tolerance e.g. ± 10°	
		ii	I = 0.2 ne ; = 0.2 x 3.2 x 10^{15} x 1.6 x 10^{-19} = 1.0(24) x 10^{-4} (A) or 0.10 mA (9.6 x 10^{-5} if using 3 x 10^{15})	C2 A1	max 2 marks if forget 0.2 factor 0.51 mA (0.48) if forget 0.2 factor	
		111	reflection/absorption at top layer; light/some photons reach bottom layer; photons below threshold energy/photons absorbed by electrons without release; recombination of ion pairs in insulating layer; scattering of light/photons out of insulating layer	B1	award mark for any sensible comment; see examples given	
			Total question 7	14		
(Question		Expected Answers	Marks	Additional Guidance	
8						
	а	i	paths spread out after passing through a gap or around an obstacle/AW	B1		
		ii	wavelength of electrons must be comparable/of the order of magnitude of the atomic spacing	M1 A1	allow electrons behave as waves/AW allow must be about 10 ⁻¹⁰ m	
	b		$\lambda = h/mv$ v = 6.6(3) x 10 ⁻³⁴ / 9.1(1) x 10 ⁻³¹ x 1.2 x 10 ⁻¹⁰	C1 M1	mark for selecting formula correct manipulation and subs. shown	
			$= 6.0 \text{ or } 6.1 \times 10^6 \text{ (m s}^{-1}\text{)}$	A1	give all 3 marks for answers to 3 figs or more: i.e. 6.04, 6.06 or 6.07	
	c	i	$= 6.0 \text{ or } 6.1 \text{ x } 10^{\circ} \text{ (m s}^{-1})$ $eV = \frac{1}{2}\text{mv}^{2}$ $V = \frac{1}{2}\text{mv}^{2}/2e = 9.1 \text{ x } 10^{-31} \text{ x } (6.0 \text{ x } 10^{6})^{2}/2 \text{ x } 1.6 \text{ x } 10^{-19}$ $= 1.0(2) \text{ x } 10^{2} \text{ (V)}$	A1 C1 C1 A1	more: i.e. 6.04, 6.06 or 6.07 mark for algebraic equation mark for correct substitution give 1 mark max for k.e. = $1.6(4) \times 10^{-17} \text{ J}$	
	c	i	$eV = \frac{1}{2}mv^2$ V = $mv^2/2e = 9.1 \times 10^{-31} \times (6.0 \times 10^6)^2/2 \times 1.6 \times 10^{-19}$	C1 C1	more: i.e. 6.04, 6.06 or 6.07 mark for algebraic equation mark for correct substitution	