## G482 Electrons, Waves and Photons

| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |
|  | a | i | $\begin{aligned} & \mathrm{E}=(\mathrm{Pt}=) 36 \times 3600 \\ & =1.3 \times 10^{5}(\mathrm{~J}) \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{C} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$ | allow $\mathrm{I}=3 \mathrm{~A}$ and $\mathrm{E}=\mathrm{VIt}$, etc. accept 129600 (J) |
|  |  | ii | $\begin{aligned} & \mathrm{Q}=\mathrm{E} / \mathrm{V}=1.3 \times 10^{5} / 12 \text { or } \mathrm{Q}=\mathrm{It}=3 \times 3600 \\ & =1.1 \times 10^{4} \\ & \text { unit: } \mathrm{C} \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$ | ecf (a)(i) accept $1.08 \times 10^{4}$ allow A s not $\mathrm{J} \mathrm{V}^{-1}$ |
|  |  | iii | $\begin{aligned} & \text { Q/e }=1.1 \times 10^{4} / 1.6 \times 10^{-19} \\ & =6.9 \times 10^{22} \end{aligned}$ | $\begin{array}{\|l\|} \hline \mathrm{C} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$ | ecf (a)(ii) accept 6.75 or $6.8 \times 10^{22}$ using 10800 |
|  | b | i | the average displacement/distance travelled of the electrons along the wire per second; (over time/on average) they move slowly in one direction through the metal/Cu lattice (when there is a p.d. across the wire); (because) they collide constantly/in a short distance with the lattice/AW | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | no mark for quoting formula allow in one second <br> max 2 marks from 3 marking points |
|  |  | ii | $\begin{aligned} & \text { select I }=\text { nAev }(=3.0 \mathrm{~A}) \\ & v=3.0 / 8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19} \\ & =2.1 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | 1 mark for correct formula <br> 1 mark for correct substitutions into formula <br> 1 mark for correct answer to 2 or more SF |
|  |  |  | Total question 1 | 12 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  |
|  | a |  | $\begin{aligned} & \hline \rho=R A / I \\ & \text { with terms defined } \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$ | full word definition gains both marks allow $A$ is area as adequate; no unit cubes |
|  | b | i | either the cable consists of (38) strands in parallel; or the area of the cable is 38 times the area of a strand or vice versa; so the resistance of 1 strand is 38 times bigger, (i.e. $1.98 \Omega \mathrm{~km}^{-1}$ ) or the resistance is inversely proportional to the area | B1 B1 | max 1 mark for $38 \times 0.052=1.98$ with no further explanation allow with either and or allow only with or |
|  |  | ii | $\begin{aligned} & A=\rho \mathrm{I} / \mathrm{R}=2.6 \times 10^{-8} \times 1000 / 2.0 \\ & =1.3 \times 10^{-5}\left(\mathrm{~m}^{2}\right) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | $\begin{aligned} & \text { allow } 1 \text { mark max. for } R=0.052 \text { giving } \\ & A=5.0 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\ & \text { give } 1 \text { mark max. for } 1.3 \times 10^{-8}\left(\mathrm{~m}^{2}\right) \\ & \hline \end{aligned}$ |
|  | c | i | $\begin{aligned} & \mathrm{P}=\mathrm{VI}=400 \times 10^{3} \times 440 \\ & =1.8 \times 10^{8}(\mathrm{~W}) \text { or } 180 \mathrm{M}(\mathrm{~W}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | $\mathrm{P}=\mathrm{VI}$ not adequate for first mark expect 176 |
|  |  | ii | 2000/176 = 11.4 so 12 required | B1 | ecf(c)(i); using 180 gives 11.1 |
|  |  | iii | $\begin{aligned} & P=I^{2} R \\ & =440^{2} \times 0.052 \\ & =1.0 \times 10^{4} \mathrm{~W}\left(\mathrm{~km}^{-1}\right) \text { or } 10 \mathrm{~kW}\left(\mathrm{~km}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | $\begin{aligned} & \hline \text { accept power/cable }=2000 / 12=167 \mathrm{MW} \\ & \mathrm{I}=167 \mathrm{M} / 400 \mathrm{k}=417 \mathrm{~A} \\ & \mathrm{P}=417^{2} \times 0.052=9.0(3) \mathrm{kW}\left(\mathrm{~km}^{-1}\right) \\ & \text { N.B. answer mark includes consistent unit } \\ & \hline \end{aligned}$ |
|  |  | iv | ```power lost per cable = 10 k x 100 < 12 = 12.0 MW fraction remaining = (2000-12)/2000=0.994 x 100 = 0.994 so 99.4% or power lost per strand = 10 k x100 = 1.0 MW fraction remaining = (176-1)/176 = 0.994 so 99.4%``` | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | ecf(c)(ii)(iii) <br> allow second mark for 'correct' answer as fraction not percentage with BOD sign allow 1 mark max. if give correct \% lost given rather than \% remaining allow 1 mark max. for $100 \times(2000-1) / 2000=99.95 \%$ |
|  |  |  | Total question 2 | 14 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |  |
|  | a |  | resistors in series add to $20 \Omega$ and current is 0.60 A so p.d. across XY is $0.60 \times 12$ ( $=7.2 \mathrm{~V}$ ) | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | accept potential divider stated or formula gives (12/20) $\times 12 \mathrm{~V}(=7.2) \mathrm{V}$ |
|  | b | i | the resistance of the LDR decreases (so total resistance in circuit decreases) and current increases | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |
|  |  | ii | resistance of LDR and $12 \Omega$ (in parallel)/across XY decreases so has smaller share of supply p.d. (and p.d. across XY falls) | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | alternative I increases so p.d. across $8.0 \Omega$ increases; so p.d. across XY falls |
|  |  |  | Total question 3 | 6 |  |
|  |  |  |  |  |  |
| Question |  |  | Expected Answers | Marks | Additional Guidance |
| 4 |  |  |  |  |  |
|  | a | I | no current/no light/does not conduct until V is greater than 1.5 V brightness/intensity of LED increases with current/voltage above 1.5 V above 1.8 V current rises almost linearly with increase in p.d./AW the LED does not obey Ohm's law as I is not proportional to V/AW below 1.5 V, LED acts as an infinite R/very high R/acts as open switch above 1.5 V , LED resistance decreases (with increasing current/voltage) | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$ | allow 1.4 to 1.6 V (QWC mark) (alternative QWC mark) <br> max 5 marks which must include at least one of the first 2 marking points |
|  |  | $\begin{gathered} \hline \text { ii } 1 \\ 2 \end{gathered}$ | $\begin{aligned} & \text { infinite resistance } \\ & I=23.0 \pm 1.0(\mathrm{~mA}) \\ & R=1.9 \times 10^{3} /(23 \pm 1)=83 \pm 4 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | apply POT error for $0.083 \Omega$ |
|  | b |  | LED symbol with correct orientation resistor (need not be labelled) and ammeter in series with it voltmeter in parallel across LED only | $\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | diode symbol + circle + at least one arrow pointing away |
|  | C |  | the resistor limits the current in the circuit (when the LED conducts) otherwise it could overheat/burn out/be damaged/AW | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ |  |
|  | d |  | in fig 4.3 the voltage range is from zero to maximum possible in fig. 4.2 the resistance variation is small/AW (so) in fig. 4.2 voltage variation across LED is small | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | allow 6.0 V accept the LED is part of a potential divider accept only at the top end of the range/AW |
|  |  |  | Total question 4 | 16 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |
|  | a | i | $\lambda$ distance between (neighbouring) identical points/points with same phase (on the wave) <br> f number of waves passing a point /cycles/vibrations (at a point) per unit time/second <br> v distance travelled by the wave (energy) per unit time/second | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | accept peak/crest to peak/crest, etc. <br> accept number of waves produced by the wave source per unit time/second not $v=f \lambda$ and not 'in one second' |
|  |  | ii | in 1 second $f$ waves are produced each of one wavelength $\lambda$ distance travelled by first wave in one second is $f \lambda=v$ | $\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | accept time for one $\lambda$ to pass is $1 / f$ so $v=\lambda /(1 / f)=f \lambda$ <br> give max 1 mark for plausible derivations purely in terms of algebra (no words) |
|  | b | i | infra red is part of the e-m spectrum lower for longer $\lambda$ than the visible region/light or suitable value or range of $\lambda$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | accept any single $\lambda$ in range $10^{-5} \mathrm{~m}$ to 7.5 x $10^{-7} \mathrm{~m}$ or any reasonable wider range |
|  |  | ii1 | $\begin{aligned} & \lambda=\mathrm{c} / \mathrm{f}=3.0 \times 10^{8} / 6.7 \times 10^{13} \\ & 4.5 \times 10^{-6}(\mathrm{~m}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | accept $4.48 \times 10^{-6}$ or more s.f. |
|  |  | 2 | $\begin{aligned} & \mathrm{T}=1 / \mathrm{f}=1 / 6.7 \times 10^{13} \\ & \mathrm{~T}=1.5 \times 10^{-14}(\mathrm{~s}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | accept $1.49 \times 10^{-14}$ |
|  |  | iii | at least one cycle of a sine or cosine curve as judged by eye amplitude $8.0 \times 10^{-12} \mathrm{~m}$ period $=1.5 \times 10^{-14} \mathrm{~s}$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | ecf (b)(ii)2 |
|  |  |  | Total question 5 | 14 |  |




